
CAPITAL UNIVERSITY OF SCIENCE AND

TECHNOLOGY, ISLAMABAD

Impact of Slip Wall on MHD

Casson Nanofluid in the Presence

of Viscous Dissipation and

Thermal Radiation
by

Faiza Anjum
A thesis submitted in partial fulfillment for the

degree of Master of Philosophy

in the

Faculty of Computing

Department of Mathematics

2020

file:www.cust.edu.pk
file:www.cust.edu.pk
file:faiqanaz777@gmail.com
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)


i

Copyright c© 2020 by Faiza Anjum

All rights reserved. No part of this thesis may be reproduced, distributed, or

transmitted in any form or by any means, including photocopying, recording, or

other electronic or mechanical methods, by any information storage and retrieval

system without the prior written permission of the author.



ii

Dedicated to my beloved Parents, Siblings and dignified Teachers, who have

taught me to work diligently for the things that I aspire to achieve.



CERTIFICATE OF APPROVAL

Impact of Slip Wall on MHD Casson Nanofluid in the

Presence of Viscous Dissipation and Thermal Radiation

by

Faiza Anjum

(MMT173035)

THESIS EXAMINING COMMITTEE

S. No. Examiner Name Organization

(a) External Examiner Examiner Name Organization

(b) Internal Examiner Examiner Name Organization

(c) Supervisor Supervisor Name Organization

Dr. Muhammad Sagheer

Thesis Supervisor

August, 2020

Dr. Muhammad Sagheer Dr. Muhammad Abdul Qadir

Head Dean

Dept. of Mathematics Faculty of Computing

August, 2020 August, 2020



iv

Author’s Declaration

I, Faiza Anjum hereby state that my MPhil thesis titled “Impact of Slip Wall

on MHD Casson Nanofluid in the Presence of Viscous Dissipation and

Thermal Radiation” is my own work and has not been submitted previously

by me for taking any degree from Capital University of Science and Technology,

Islamabad or anywhere else in the country/abroad.

At any time if my statement is found to be incorrect even after my graduation,

the University has the right to withdraw my MPhil Degree.

(Faiza Anjum)

Registration No: MMT173035



v

Plagiarism Undertaking

I solemnly declare that research work presented in this thesis titled “Impact of

Slip Wall on MHD Casson Nanofluid in the Presence of Viscous Dissipation and

Thermal Radiation” is solely my research work with no significant contribution

from any other person. Small contribution/help wherever taken has been dully

acknowledged and that complete thesis has been written by me.

I understand the zero tolerance policy of the Higher Education Commission of

Pakistan (HEC) and Capital University of Science and Technology towards pla-

giarism. Therefore, I as an author of the above titled thesis declare that no portion

of my thesis has been plagiarized and any material used as referred/cited.

I undertake that if I am found guilty of any formal plagiarism in the above titled

thesis even after award of MPhil Degree, the University reserves the right to with-

draw/revoke my MPhil degree and that HEC and the University have the right to

publish my name on the HEC/University website on which names of students are

placed who submitted plagiarized work.

(Faiza Anjum)

Registration No: MMT173035



vi

Acknowledgements

In the name of Allah, the Most Gracious and the Most Merciful Alhamdulillah,

all praise is due to Allah; we praise Him, seek His help, and ask for His forgiveness.

I am thankful to Allah, who supplied me with the courage, the guidance, and the

love to complete this research. Also, I cannot forget the ideal man of the world and

most respectable personality for whom Allah created the whole universe, Prophet

Mohammad (Peace Be Upon Him).

Foremost, I would like to express my sincere gratitude to my supervisor Dr.

Muhammad Sagheer for his passionate for his patience, motivation, enthusi-

asm, and immense knowledge. His guidance helped me in all the time of research

and writing of this thesis. By working under his supervision, I have not just ac-

quired technical knowledge but also learn about being a good human. I would like

to acknowledge CUST for providing me such a favorable environment to conduct

this research.

I owe my profound gratitude to Dr. Shafqat Hussain for his superb guidance

and inexhaustible inspiration throughout this thesis. I am truly thankful to my

teachers at Capital University of Science and Technology, Dr. Rashid Ali, Dr.

Abdul Rehman Kashif, Dr. Dur e Shehwar, Dr. Samina Rashid and Dr.

Muhammad Afzal.

My heartiest and sincere salutations to my Parents and Siblings, whose love and

guidance are with me in whatever I pursue and for providing me unending inspi-

ration. Dear brother Altaf Hussain, I wholeheartedly would like to thank you

for your intense caring and support in every aspect of my life.

The acknowledgment will surely remain incomplete if I do not express my deep in-

debtedness and cordial thanks to Dr. Muhammad Nasir Abrar for his valuable

suggestions, guidance and unending cooperation during my thesis.



vii

Abstract

In this thesis, numerical study of Casson nanofluid in the presence of viscous

dissipation, thermal radiation and chemical reaction coefficient past a stretching

sheet has been carried out. The non-linear partial differential equations describing

the proposed flow problem are reduced to a set of ordinary differential equations via

suitable similarity transformations. The shooting method has been used to obtain

the numerical results with the help of the computational software MATLAB. The

effects of pertinent flow parameters on the non-dimensional velocity, temperature

and concentration profiles are presented via tables and graphs. From the results,

it has been remarked that the heat transfer rate escalates for the larger values of

the radiation parameter for the Casson nanofluid.
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Chapter 1

Introduction

In the last few years, the non-Newtonian fluids attracted the attention of the math-

ematicians, physicist, engineers, etc., due to their demanding applications of the

domestic and industrial usage. In our daily life such applications are all around us,

from a morning coffee to an evening bath. Such application includes, toothpaste,

paints, gels, lubrication oils, polymers, etc.,. The Navier Stokes equations due to

their composite structure, can not effectively describe the flow of non-Newtonian

fluids. In the non-Newtonian fluids, the constitutive equations exist much more

complex than the Navier Stokes equations. The versatile behavior of fluids does

not develop with a single constitutive equation by which all the non-Newtonian

fluids can be studied. Some relevant studies on the subject of non-Newtonian

fluids can be seen from the list (Wang and Tan [1], Fetecau et al. [2], Cortell [3],

Kothandapani and Srinivas [4], Jamil and Fetecau[5], Rashidi et al. [6].)

The study of MHD fluid flow was first established by a Swedish physicist, Alfven

[7]. Because of its important applications in engineering processes [8], energy gen-

erators [9], planetary and solar plasma fluid dynamics systems [10], magnetic field

regulation of material processing device [11], hybrid magnetic propulsion system

for space travel [12], industries [13], biomedical sciences [14], many researchers are

interested in studying MHD fluid flow. Yih [15] studied the impact of heat and

mass transfer for MHD along a continuously moving shear surface.

1
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Modather and Chamkha [16] discussed the time dependent MHD flow past a semi-

infinite flat plate. Kesvaiah et al. [17] investigated the MHD flow and heat transfer

towards a porous shrinking sheet with temperature bounce and velocity fall. Zheng

et al. [18] inspected the magnetic field and thermal radiation on a micropolar fluid

near a stagnation point towards a moving surface. Mahmoud and Waheed [19] an-

alyzed the non-uniform fluid flow becacuse of continuously moving flat surface

along convective boundary conditions. He used the numerical shooting technique.

In the absence of magnetic field, Mustafa et al. [20] discussed the MHD flow with

the impact of Joule heating, viscous dissipation and velocity slip. The role of vis-

cous dissipation in different devices plays an important part in normal convection.

Yasin et al. [21] discussed the impact of thermal radiation on MHD flow be-

tween the horizontal plates. They numerically used the RK-4 approach. Reynolds

number, magnetic parameter, Schmidth number, thermophoretic parameter were

inspected.

The thickness of the boundary layer is decreased by the rise in radiation parameter.

In Sheikholeslami et al’s geometry the symbolic impacts of thermophoresis and

Brownian motion were observed [22]. Chutia and Deka [23] numerically discussed

the heat transfer and steady MHD flow in an electrically protected rectangular

pipe in the existence of the attractive field. The inclined magnetic field effects on

fluid flow were explored by Singh et al. [24].

1.1 Thesis contribution

In this thesis, a detailed review of [25] is conducted and the results have been imi-

tated by considering the additional impact of slip wall on MHD Casson nanofluid

in the presence of viscous dissipation and thermal radiation. In this work, through

an appropriate transformation, the obtained PDEs are transform into the dimen-

sionless ODEs. The numerical outcomes are calculated by using the shooting
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technique. Using the tables and graphs, different physical parameter effects on

the flow and heat conduction are also explained.

1.2 Thesis outline

A compact sketch of the thesis is given as:

1.2.1 Chapter 2

This chapter describes few basic definitions and terminologies. Furthermore some

basic laws and dimensionless physical parameters are also included.

1.2.2 Chapter 3

Chapter 3, give full review of [25], which considers MHD stagnation point flow

and Casson nanofluid heat transfer past a stretching sheet.

1.2.3 Chapter 4

This chapter extends the model given in [25] by considering the additional im-

pact of slip wall on MHD Casson nanofluid in the presence of viscous dissipation

and thermal in the energy equation. Tables and graphs describe the behavior of

different physical parameters.

1.2.4 Chapter 5

Chapter 5, gives the conclusion of the entire work and a plan for the future research.

References used in the thesis are mentioned in Biblography.



Chapter 2

Preliminaries

Some definitions, basic laws and terminologies would be discussed in the current

chapter, which would be used in the next chapters.

2.1 Some Basic Definitions

In this section, some fundamental ideas, laws and terminologies have been pre-

sented that will be beneficial for the further discussion [26–32].

2.1.1 Fluid

“A fluid is a substance that deforms continuously under the application of a shear

stress, no matter how small the stress may be. Thus fluids comprise of the liquid

and gas (or vapour) phases of the physical forms in which matter exists.”

2.1.2 Stress

“Stress is a force acted upon a material per unit of its area and is denoted by τ .

Mathematically, it can be written as:

4
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τ =
F

A
,

where F denotes the force and A represents the area. ”

2.1.2.1 Shear Stress

“It is a type of stress in which the force vector acts parallel to the material surface

or the cross section of a material. ”

2.1.2.2 Normal Stress

“It is a type of stress in which the force vector acts perpendicular to the surface

of material or the cross section of a material.”

2.1.2.3 Fluid Mechanics

“Fluid mechanics deals with the behaviour of fluids at rest or in motion.”

2.1.3 Fluid Dynamics

“The branch of fluid mechanics that covers the properties of fluid in the state of

progression from one place to another is called fluid dynamics.”

2.1.4 Fluid Statics

“Fluid static is the branch of fluid mechanics, that deals with a fluid and its

characteristics at the constant position.”

2.1.5 Mass Transfer

“Mass transfer is the total movement of mass from one place to another.”
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2.1.6 Heat Transfer

“It is the energy transfer due to temperature difference. At the point when there

is a temperature contrast in a medium or between media, heat transfer must take

place. Heat transfer is normally conducted from a high temperature region to a

low temperature. For example, heat is transferred from stove to the cooking pan.”

2.1.7 Conduction

“Conduction is the process in which heat is transferred through the material be-

tween the objects that are in physical contact. For example,

• picking up a hot cup of tea,

• after a car is turned on, the engine becomes hot,

• a radiator is a good example of conduction.”

2.1.8 Convection

“Convection is a mechanism in which heat is transferred through fluids (gases or

liquids) from a hot place to a cool place. For example,

• macaroni rising and falling in a pot of boiling water,

• streaming cup of hot tea. The steam is showing heat transferred into the

air. ”

2.1.9 Thermal Radiation

“The process by which heat is transferred from a body by virtue of its tempera-

ture, without the aid of any intervening medium is called thermal radiation. For

example, toasters use thermal radiations emitted by its element to toast bread.”
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2.1.10 Boundary Layer

“Viscous effects are particularly important near the solid surfaces, where the strong

interactions of the fluid with molecules of the solid causes the relative velocity

between the fluid and the solid to become almost zero for a stationary surface.

Therefore, the fluid velocity in the region near the wall must reduce to zero. This

is called no slip condition. In this condition, there is no relative motion between

the fluid and the solid surface at their point of contact. It follows that the flow

velocity varies with distance from the wall; from zero at the wall to its full value

some distance away, so that significant velocity gradients are established close to

the wall. In most cases this region is thin (compared to typical body dimension),

and is called boundary layer.”

2.2 Conservation Laws [33]

“Several conservation laws such as the laws of conservation of mass, conservation of

energy and conservation of momentum are of great use for the research community.

Historically, the conservation laws were first applied to a fixed quantity of matter

called a closed system or just a system, and then extended to regions in space called

control volumes. The conservation relations are also called balance equations since

any conserved quantity must balance during a process.”

2.2.1 Conservation of Mass

“Law of conversation of mass states that mass can neither be created nor be

destroyed in a chemical reaction. The conservation of mass relation for a closed

system undergoing a change is expressed as:

msys = constant,

or
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dmsys

dt
= 0,

which is an obvious statement that the mass of the system remains constant during

a process. For a control volume (CV ), mass balance is expressed in the rate form

as:

min −mout =
dmCV

dt

where min and mout are the total rates of mass flow into and out of the control

volume, respectively, and
dmCV

dt
is the rate of change of mass within the control

volume boundaries. In fluid mechanics, the conservation of mass relation written

for a differential control volume is usually called the continuity equation.”

2.2.2 Conservation of Momentum

“The product of the mass and the velocity of a body is called the linear momentum

or just the momentum of the body, and the momentum of a rigid body of mass m

moving with a velocity
−→
V is m

−→
V . Newtons second law states that the acceleration

of a body is proportional to the net force acting on it and is inversely proportional

to its mass, and that the rate of change of the momentum of a body is equal to

the net force acting on the body. Therefore, the momentum of a system remains

constant when the net force acting on it is zero, and thus the momentum of such

systems is conserved. This is known as the conservation of momentum principle.”

2.2.3 Conservation of Energy

“This law states that energy can neither be created nor be destroyed, rather it

can only be transferred from one form to another. Energy can be transferred to

or from a closed system by heat or work, and the conservation of energy principle

requires that the net energy transfer to or from a system during a process be equal

to the change in energy content of the system. Control volumes involve energy
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transfer via mass flow also, and the conservation of energy principle, also called

the energy balance, is expressed as:

Ein − Eout=
dECV
dt

,

where Ein and Eout are the total rates of energy transfer into and out of the control

volume, respectively, and
dECV
dt

is the time rate of change of energy within the

control volume boundaries. In fluid mechanics, we usually limit our consideration

to mechanical forms of energy only.”

2.3 Flow [30]

“It is the deformation of the material under the influence of different forces. If the

deformation increase is continuous without any limit, then the process is known

as flow.”

2.3.1 Compressible and Incompressible Flows

“Flow in which variations in density are negligible is termed as incompressible

otherwise it is called compressible. The most common example of compressible

flow is the flow of gases, while the flow of liquids may frequently be treated as

incompressible.

Mathematically, for compressible flow:

Dρ

Dt
= 0,

where ρ denotes the fluid density and
D

Dt
is the material derivative given by;

D

Dt
=

∂

∂t
+ v.5,

where v denotes the velocity of flow and5 is the differential operator. In Cartesian

coordinate system, 5 is given as:
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5 =
∂

∂x
î+

∂

∂y
ĵ +

∂

∂z
k̂.”

2.3.2 Uniform and Non-uniform Flows

“The flow is said to be uniform if the magnitude and direction of flow velocity are

the same at every point and the flow is said to be non-uniform if the velocity is

not the same at each point of flow, at a given instant.”

2.3.3 Steady and Unsteady Flows

“A flow is said to be steady flow in which the fluid properties do not change with

time at a specific point,

∂λ

∂t
= 0,

where λ is any fluid property. A flow is said to be unsteady in which the fluid

properties change with time, i.e ”

∂λ

∂t
6= 0.

2.3.4 Laminar and Turbulent Flows

“A flow is laminar in which the fluid particles move in smooth layers or laminar

and a turbulent in which the fluid particles rapidly mix as they move along due

to random three-dimensional velocity fluctuations. ”

2.3.5 Viscosity

“It is the property of the fluid that resists the fluid flow. In other words, a fluid

viscosity is that characteristic which measures the amount of resistance to the

shear stress. It is denoted by µ and mathematically, it can be written as:
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Viscosity = µ =
shear stress

rate of shear strain
.”

2.3.6 Kinematic Viscosity

“The ratio of the dynamic viscosity to the density of fluid is said to be kinematic

viscosity. Symbolically, it can be written as ν and mathematically, it is expressed

as:

ν =
µ

ρ
,

where µ and ρ denote the dynamic viscosity and the density respectively. The

dimension of kinematic viscosity is given by [L
2

T
]. ”

2.4 Newtonian and Non-Newtonian Fluids

“Newtonian fluids fulfill Newtons law of viscosity which can be written mathemat-

ically as:

τxy = µ

(
du

dy

)
,

where

µ = Dynamic viscosity,

τxy = Shear stress =
F

A
,

du

dy
= Rate of shear deformation.

The most common examples of Newtonian fluid are water, glycerol.

The fluids, which do not obey the Newtons law of viscosity are known as non-

Newtonian fluids. For such fluids,

τxy = k

(
du

dy

)n
,
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where

k is the flow consistency index,
du

dy
is shear rate,

n is flow behaviour index.

For n = 1 with k = µ, the above equation reduces to the Newtons’s law of

viscosity. Paints, blood, biological fluids and polymer melts are good examples of

non-Newtonian fluids.”

2.5 Viscous Dissipation

“The process in which the work done by fluid is converted into heat is called viscous

dissipation. In thermodynamics, dissipation is the result of an irreversible process

that takes place in homogeneous thermodynamic systems. A dissipative process

is a process in which energy (internal, bulk flow kinetic, or system potential) is

transformed from some initial form to some final form; the capacity of the final

form to do mechanical work is less than that of the initial form. For example, heat

transfer is dissipative because it is a transfer of internal energy from a hotter body

to a colder one. Following the second law of thermodynamics, the entropy varies

with temperature (reduces the capacity of the combination of the two bodies to

do mechanical work), but never decreases in an isolated system.”

2.6 Thermal Conductivity

“Thermal conductivity k is the property of a material related to its ability to

transfer heat. Mathematically,

k =
q5 l

S 5 T
,

where q is the heat passing through a surface area S and the effect of a temperature

difference 5T over a distance is 5l. Here l, S and 5T all are assumed to be of
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unit measurement. In SI unit of thermal conductivity is watt per meter kelvin and

its dimension is [MLT−1θ−1].”

2.7 Thermal Diffusivity

“Thermal diffusivity is material’s property which identifies the unsteady heat con-

duction. Mathematically, it can be written as:

α =
k

ρCp
,

where k, ρ and Cp represent the thermal conductivity of material, the density and

the specific heat capacity. In SI system unit and dimension of thermal diffusivity

are m2s−1 and [LT−1] respectively.”

2.8 Dimensionless Parameters [31]

Following section reflects the definitions of certain dimensionless used in this study.

2.8.1 Reynolds Number

“This number expresses the ratio of the fluid inertial force to that of molecular

friction (viscosity). It determines the character of the flow (laminar, turbulent and

transient flows). Mathematically, it can be write as:

Re =
u0H

ν
,

where H is characteristic length, u0 the flow velocity and ν is the kinematic vis-

cosity.”
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2.8.2 Eckert Number

“It is the dimensionless number used in continuum mechanics. It describes the

relation between flows and the boundary layer enthalpy difference and it is used

for characterized heat dissipation. Mathematically,

Ec =
u2

Cp5 T
,

where u is local flow velocity, Cp is the specific heat and 5T is the difference

between wall temperature.”

2.8.3 Prandtl Number

“This number expresses the ratio of the momentum diffusivity (viscosity) to the

thermal diffusivity. Mathematically, it can be written as:

Pr =
ν

α
=

µ/ρ

k/ρCp
=
µCp
k
,

where ν represents the kinematic viscosity and α denotes the thermal diffusivity.

It characterizes the physical properties of a fluid with convective and diffusive

transfers.”

2.8.4 Schmidt Number

“It is the ratio between kinematic viscosity ν and molecular diffusion D. It is

denoted by Sc and mathematically we can write it as:

Sc =
ν

D
,

where ν is the kinematic viscosity and D is the mass diffusivity.”
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2.8.5 Skin Friction Coefficient

“Skin friction co-efficient occurs between the fluid and solid surface which leads to

slow down the motion of fluid. The skin friction co-efficient is defined as:

Cf =
2τw
ρU2

,

where τw denotes the wall shear stress, ρ the density and U the free-stream veloc-

ity.”

2.8.6 Nusselt Number

“It is the ratio of the convective to the conductive heat heat transfer to the bound-

ary. Mathematically,

Nu =
hL

k
,

where h stands for convective heat transfer, L stands for the characteristic length

and k stands for the thermal conductivity.”

2.8.7 Sherwood Number

“It is the non-dimensional quantity which shows the ratio of the mass transport

by convection to the transfer of mass by diffusion. Mathematically,

Sh = kL
D

,

where L is characteristics length, D is the mass diffusivity and k is the mass

transfer co-efficient.”



Chapter 3

Impact of Slip Wall on MHD

Casson Nanofluid

3.1 Introduction

This chapter explains the Casson nanofluid flow over a linear stretching sheet along

with the slip wall. Mainly, the analysis of heat and mass transfer in the presence

of Brownian motion and the thermophoretic diffusion effect is performed. The

obtained PDEs are transformed into the dimensionless ODEs with the help of

transformation. To achieve numerical solution for the considered model, shooting

technique has been recruited. For the velocity, temperature, and concentration

profiles, the numerical computations are conducted. In addition, physical quanti-

ties of absorption like; skin friction, local Nusselt and Sherwood number are also

shown graphically. A detailed review work of Ibrahim and Makinde [25] has been

presented in this chapter.

3.2 Mathematical Modeling

Consider the 2-D stagnation point flow of MHD Casson fluid over an stretching

sheet under the impact of slip wall. Magnetic field of strength B0 is applied

16
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perpendicular to the fluid motion. Additionally, the impacts of Brownian motion

and thermophoretic diffusion are also considered. Furthermore, the equations of

energy and mass transport are known to determine the profiles of temperature and

concentration respectively. The Cartesian coordinate system is regarded in such

a way that x-axis is taken along the stretching plate and y- axis is normal to the

plate.

The stretching and slip velocities at the boundary are taken as Uw(x) = ax and

Uslip =

(
µB + Py√

2πc

)
∂u
∂y

respectively, where Py denotes the yield stress, Tw is

the surface temperature, µB is the plastic dynamic viscosity, πc represents the

critical value of product, U∞ = bx, T∞ and C∞ represent the free stream velocity,

temperature and concentration. The physical model is dispensed with graphical

representation in Figure 3.1.

Figure 3.1: Physical representation of the problem
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3.2.1 Governing equations

The governing boundary layer equations are shown as follows for the two dimen-

sional incompressible Casson nanofluid:

∂u

∂x
+

∂v

∂y
= 0, (3.1)

u
∂u

∂x
+ v

∂u

∂y
= ν

(
1 +

1

γ

)
∂2u

∂y2
+ U∞

∂U∞
∂x

+
σB2

0

ρf
(U∞ − u), (3.2)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+ Γ

[
DB

∂C∂T

∂y∂y
+

DT

T∞

(
∂T

∂y

)2]
, (3.3)

u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+

DT∂
2T

T∞∂y2
. (3.4)

The required boundary conditions are:

Wall conditions (y = 0):

u = Uw(x) + USlip → u = ax+

(
µB +

Py√
2πc

)
∂u

∂y
, v = 0,

− k∂T
∂y

= hf (Tf − T ), C = Cw.

Free stream conditions (y →∞):

u→ U∞ = bx, v = 0, T → T∞, C → C∞.


(3.5)

Here, u and v are components of velocity in the x and y direction respectively, γ

denotes the Casson parameter, ρf is the fluid density, T represents the tempera-

ture, α is the thermal diffusivity, C is the concentration parameter, k denotes the

thermal conductivity, hf denotes the coefficient of heat transfer and a and b are

positive constant.
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3.2.2 Similarity Transformation

The following similarity variables for translation of PDEs into ODEs have been

added here.

η = y

√
a

ν
, ψ =

√
aνxf(η),

θ(η) =
T − T∞
Tw − T∞

, φ(η) =
C − C∞
Cw − C∞

.

 (3.6)

Following are some significant derivatives essential for further derivation.

• u =
∂ψ

∂y
, v = −∂ψ

∂x
,

• ψ =
√
aνxf(η), η = y

√
a

ν
,

• u =
∂ψ

∂y

=
∂

∂y

[√
aνxf(η)

]
=
√
aνxf

′ ∂η

∂y

= axf ′. (3.7)

• v = −∂ψ
∂x

= − ∂

∂x

[√
aνxf(η)

]
= −
√
aν

[
(1)f(η) + xf

′ ∂η

∂x

]
= −
√
aνf(η). ∵

(
∂η

∂x
= 0

)
(3.8)

• u = axf
′

∂u

∂x
= af

′
+ axf

′′ ∂η

∂x

= af
′

∂u

∂y
= axf

′′ ∂η

∂y

= a
3
2
x√
ν
f

′′
(3.9)

• ∂2u

∂x2
= af

′′ ∂η

∂x
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• ∂2u

∂y2
= a

3
2
x√
ν
f

′′′ ∂η

∂y

=
a2x

ν
f ′′′

• v = −
√
aνf. (3.10)

• ∂v

∂x
= −
√
aνf

′ ∂η

∂x

∂v

∂x
= 0 (3.11)

• ∂2v

∂x2
= 0 (3.12)

• ∂v

∂y
= −
√
aνf

′ ∂η

∂y

= −
√
aνf

′
√
a

ν
∵

(
∂η

∂y
=

√
a

ν

)
= −af ′ (3.13)

• ∂2v

∂y2
= af ′′

∂η

∂y

= af ′′
√
a

ν

=
a

3
2

√
ν
f

′′
. (3.14)

Verification of continuity equation (3.1) is straightforwardly done as follows:

∂u

∂x
+
∂v

∂y
= af ′ + (−af)

= af ′ − af ′

∂u

∂x
+
∂v

∂y
= 0. (3.15)

For the conversion of momentum equation (3.2), we proceed as follows:

u
∂u

∂x
+ v

∂u

∂y
= axf ′

(
af ′
)

+

(
−
√
aνf

)(
a3
2

ν
f ′′
)

• u∂u
∂x

+ v
∂u

∂y
= a2x(f ′)2 − a2xf ′′

• As U∞ = bx,
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∴
∂U∞
∂x

= b.

Putting above equations in (3.2)

a2x(f ′)2 − a2xff ′′ = ν

(
1 +

1

γ

)
a2x

ν
f ′′′ + bx.b+

σB2
0

ρf

(
bx− axf ′

)
a2x(f ′)2 − a2xff ′′ =

(
1 +

1

γ

)
a2xf ′′′ + b2x+

σB2
0

ρf
bx− σB2

0

ρf
axf ′ (3.16)

The dimensionless form of (3.2) is as follows:

a2xf ′
2 − a2xff ′′ =

(
1 +

1

γ

)
a2xf ′′′ + b2x+

σB2
0

ρf
bx− σB2

0

ρf
axf ′ (3.17)

Dividing each term of (3.17) by a2x we get,

(f ′)2 − ff ′′ =
(

1 +
1

γ

)
f ′′′ +

b2

a2
+
σB2

0b

a2ρf
− σB2

0

aρff
f ′

(f ′)2 − ff ′′ =
(

1 +
1

γ

)
f ′′′ +

(
b

a

)2

+
σB2

0

aρf

(
b

a
− f ′

)
(

1 +
1

γ

)
f ′′′ + ff ′′ − (f ′)2 + A2 +M(A− f ′) = 0, (3.18)

where (
A =

b

a
, M =

σB2
0

aρf

)
For the verification of energy equation (3.3), we proceed as follows: As

• θ(η) =
T − T∞
Tw − T∞

T = T∞+ (Tw − T∞)θ(η)

∂T

∂x
= 0 + (Tw − T∞)θ′

∂T

∂x
= 0 ∵

(
∂η

∂x
= 0

)
• ∂T

∂y
= 0 + (Tw − T∞)θ′

∂η

∂y

∂η

∂y
=

√
a

ν
(Tw − T∞)θ′



MHD Casson Nanofluid 22

• ∂2T

∂y2
=

√
a

ν
(Tw − T∞)θ′′

∂η

∂y

=
a(Tw − T∞)

ν
θ′′ ∵

(
∂η

∂y
=

√
a

ν

)
(3.19)

Also,

φ(η) =
C − C∞
Cw − C∞

(3.20)

• C = C∞ + (Cw − C∞)φ(η)

∂C

∂x
= 0 + (Cw − C∞)φ′

∂η

∂x
∂C

∂x
= 0

• ∂C

∂y
= 0 + (Cw − C∞)φ′

∂η

∂y

= (Cw − C∞)φ′
√
a

ν

=

√
a

ν
(Cw − C∞)φ′

• ∂2C

∂y2
=

√
a

ν
(Cw − C∞)φ′′

∂η

∂y

=
a

ν
(Cw − C∞)φ′′. (3.21)

Putting all converted expressions in (3.3), we get

0 +

(
−
√
a

ν
f

)√
a

ν
(Tw − T∞)θ′ = α

a(Tw − T∞)

ν
θ′′

+ Γ

[
DB

√
a

ν
(Cw − C∞)φ′

√
a

ν
(Tw − T∞)θ′

]
+ Γ

[
DT

T∞

√
a

ν
(Tw − T∞)θ

′
2]

− a(Tw − T∞)fθ′ = α
a(Tw − Tinfty)

ν
θ′′

+ Γ

[
DBa

ν
(Cw − C∞)(Tw − T∞)φ′θ′ +

aDT

νTinfty
(Tw − T∞)2(θ′)2

]
− a(Tw − T∞)fθ′ = α

a(Tw − T∞)

ν
θ′′

+ Γ
(ρC)p
(ρC)f

a

ν
DB(Cw − C∞)(Tw − T∞)φ′θ′

+
(ρC)p
(ρC)f

a

ν

DT

D∞
(Tw − T∞)2θ′

2
. ∵

(
Γ =

(ρC)p
(ρC)f

)
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Multiply each term by
ν

α a(Tw − T∞)

− ν

α
fθ′ = θ′′ +

(ρC)p
(ρC)fα

DB(Cw − C∞)φ′θ′ +
(ρC)p

(ρC)fα

DT

T∞
(Tw − T∞)θ′

2
, (3.22)

as

Pr =
ν

α
,

− Prfθ′ = θ′′ +
(ρC)p
α(ρC)f

DB(CwC∞)φ′θ′ +
(ρC)p

(ρC)fα

DT

T∞
(Tw − T∞)θ′

2
, (3.23)

− ν

ν
Prfθ′ =

ν

ν
θ′′ +

ν

ν

(ρC)p
α(ρC)f

DB(CwC∞)φ′θ′ +
ν

ν

(ρC)p
(ρC)fα

DT

T∞
(Tw − T∞)θ′

2
,

−Prfθ′ = θ′′ + Pr
(ρC)p
ν(ρC)f

DB(Cw − C∞)φ′θ′ + Pr
(ρC)p

(ρC)fν

DT

T∞
(Tw − T∞)θ′

2
,

−Prfθ′ = θ′′ + PrNbφ′θ′ + PrNt(θ′)2, (3.24)

θ′′ + Prfθ′ + PrNbφ′θ′ + PrNt(θ′)2 = 0, (3.25)

where

Nb =
(ρC)p

(ρC)fν
DB(Cw − C∞),

Nt =
(ρC)p

(ρC)fν
DT (Tw − T∞)
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Similarly the following procedure elaborates the conversion of concentration equa-

tion. Using above converted expression in (3.4)

0 + (−
√
aνf).

√
a

ν
f(Cw − C∞)φ′ = DB

a(Cw − C∞)

ν
φ′′ +

DT

T∞
a
Tw − T∞

ν
θ′′,

−
√
aν
a

ν
(Cw − C∞)fφ′ =

DB

ν
a(Cw − C∞)φ′′ +

DT a

T∞ ν
(Tw − T∞)θ′′,

− a(Cw − C∞)fφ′ =
DB

ν
a(Cw − C∞)φ′′ +

DT a

T∞ ν
(Tw − T∞)θ′′.

Multiplying each term by
ν

aDB(Cw − C∞)

− ν

DB

fφ′ = φ′′ +
DT

DB T∞

Tw − T∞
Cw − C∞

θ′′ (3.26)

• Le Pr =
α

DB

ν

α

• Le Pr =
ν

DB

(3.27)

• Nt

Nb
=

(ρC)p DT (Tw − T∞)

(rhoC)f
ν T∞ ÷

(ρC)p DB(φw − φ∞)

(rhoC)f
ν (3.28)

=
(ρC)p DT (Tw − T∞)

(rhoC)f
ν T∞ ·

(ρC)f ν

(ρC)p
DB(φw − φ∞)

=
DT (Tw − T∞)

DB T∞(Cw − C∞)
(3.29)

Putting (3.27) and (3.28) in (3.26) we get,

− ν

DB

fφ′ = φ′′ +
DT (Tw − T∞)

DBT∞(Cw − C∞)
θ′′

−Le Pr f φ′ = φ′′ +
Nt

Nb
θ′′

φ′′ + Le Pr f φ′ +
Nt

Nb
θ′′ = 0. (3.30)
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Finally, the ODEs describing the proposed flow problem can be re-collected in the

following system.

(
1 +

1

γ

)
f ′′′ + ff ′′ − (f ′)2 + A2 +M(A− f ′) = 0 (3.31)

θ′′ + Prfθ′ + PrNbφ′θ′ + PrNt(θ′)2 = 0 (3.32)

φ′′ + Le Pr f φ′ +
Nt

Nb
θ′′ = 0. (3.33)

The dimensionless conditions associated with the boundary are as follows:

f(0) = 0,

f
′
(0) = 1 + δ

(
1 +

1

γ

)
f

′′
(0),

θ
′
(0) = −Bi[1− θ(0)], φ(0) = 1, at η = 0,

f
′
(∞)→ A, θ(∞)→ 0, φ(∞)→ 0, as η →∞


(3.34)

The following expression refers to different parameters used in the above equations:

A =
b

a
,

Pr =
ν

α
,

δ = µβ

√
a

ν

Le =
α

DB

,

M =
σB2

0

ρfa
,

Bi =
hf
k

√
ν

a
,

Nb =
(ρC)p

(ρC)fν
DB(Cw − C∞),

Nt =
(ρC)p

(ρC)fν
DT (Tw − T∞)



(3.35)

The coefficient of skin friction, is as follows:

Cf =
τw
ρu2w

(3.36)
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where

τw =

(
µB +

Py√
2πc

)(
∂u

∂y

)
,

= µ
(
1 +

Py
µ
√

2πc

)(
∂u

∂y

)
,

= τµB

(
1 +

1

γ

)
∂u

∂y
, (3.37)

uw(x) = ax, (3.38)

∂u

∂y
= axf

′′
√
a

ν
,

= a

√
a

ν
xf

′′
, (3.39)

Using (3.37)-(3.39) in (3.36), we get

Cf =

µB

(
1 + 1

γ

)
a
√

a
ν
xf

′′

ρa2x2
,

=

ν√
ν

(
1 + 1

γ

)
a
√
axf

′′

a2x2
,

=

ν√
ν

(
1 + 1

γ

)
a
√
axf

′′

ax
,

=

√
ν√
ax

(
1 +

1

γ

)
f

′′
, (3.40)

Cf

(√
ax√
ν

)
=

(
1 +

1

γ

)
f

′′
,

Cf

√
a√
ν

√
x
√
x =

(
1 +

1

γ

)
f

′′
,

Cf

√
ax√
ν

√
x =

(
1 +

1

γ

)
f

′′
,

Cf

√
uw
√
x√

ν
=

(
1 +

1

γ

)
f

′′
. (3.41)

As

Rex =
Uw.x

ν
, (3.42)
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so

Re
1
2
x =

U
1
2
w .x

1
2

ν
1
2

=

√
uw
√
x√

ν

CfRe
1
2
x =

(
1 +

1

γ

)
f

′′
. (3.43)

The local Nusselt number is characterized as:

Nux =
xqw

k(Tw − T∞)
,

where

qw = −k
(
∂T

∂y

)
y=0

,

and
∂T

∂y
=

√
a

ν

(
Tw − T∞

)
θ′(0)

Using (3.44) in (3.44) and (3.44) in (3.44)

Nux = −x
√
a

ν
θ′(0)

⇒ Nux = −
√
x
√
x
√
a

θ
′√ν

⇒ Nux = −
√
x
√
ax

θ
′√ν

⇒ Nux√
Rex

= −θ′(0). (3.44)

The local Sherwood number is characterized as:

Shx =
xhm

DB

(Cw − C∞),

where

hm = −DB

(
∂φ

∂y

)
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Now

φ = (Cw − C∞)φ+ C∞

⇒ ∂φ

∂y
=

√
a

ν
(Cw − C∞)φ

′
(3.45)

Using (3.45) in (3.45),

hm = −DB

√
a

ν
(Cw − C∞)φ

′
(0) (3.46)

Using (3.46) in (3.45),

Shx = −
xDB

√
a
ν
(Cw − C∞)φ

′
(0)

DB(Cw − C∞)

= −x
√
a

ν
φ

′
(0)

=
−
√
x
√
axφ(0)

√
ν

= −
√
Rx φ

′
(0)

⇒ Shx√
Rx

= −φ′
(0). (3.47)

3.3 Solution Approach

In order to solve the system of ODEs (3.30) - (3.32) subject to the boundary

conditions (3.5), the shooting technique has been used. Basically, equation (3.30)

is solved numerically and afterward the computed results of f , f
′

and f
′′

are used

in equations (3.31)-(3.32). For the numerical treatment of equation (3.30), the

missing initial condition f
′′
(0) has been denoted as p and the following notations



MHD Casson Nanofluid 29

have been considered.

f = g1,

f ′ = g′1 = g2,

f ′′ = g′′1 = g′2 = g3,

∂f

∂p
= g4,

∂f
′

∂p
= g5,

∂f
′′

∂p
= g6,

(3.48)

The equation (3.30) can be translated into a scheme of three first-order ODEs

using the upward notations. The reduced form of (3.30) is the first three of the

ODEs and the remaining three are obtained by differentiating the first three w.r.t

p.

g
′

1 = g2; g1(0) = 0

g
′

2 = g3; g2(0) = 1 + δ

(
1 +

1

γ

)
g

g
′

3 =
γ

γ + 1

[
−g1g3 + g22 − A2 −M(A− g2)

]
; g3(0) = p

g
′

4 = g5; g4(0) = 0

g
′

5 = g6; g5(0) = δ

(
1 +

1

γ

)
g

′

6 =
γ

γ + 1

[
−g4g3 − g1g6 + 2g2g5 +Mg5

]
; g6(0) = 1

(3.49)

The RK-4 technique has been used to tackle the above initial value problem. In

order to get the approximate numerical results, the problem’s domain is considered

to be bounded i.e [0, η∞], where η∞ is chosen to be an appropriate finite positive

real number so that the variation in the result for η m η∞ is ignorable. The missing

condition for the above system of equations is to be picked to such an extent that
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(g2(∞))p = A. This mathematical equation was solved using the method of the

Newton defined by the following iterative scheme.

p(n+1) = p(n) −
(g2(η∞))g=g(n) − A(

∂g2(η∞)
∂g

)
p=p(n)

, (3.50)

p(n) −
(g2(η∞))p=p(n) − A

(g2(η∞))p=p(n)

, (3.51)

The stoping criteria for the shooting strategy is set as,

|(g2(η∞))− A|l ε, (3.52)

for some sufficiently small positive number ε,

Now to solve the equations (3.31) and (3.32) numerically, the missing initial con-

ditions θ(0) and φ(0) have been denoted by s and t, respectively. The following

notations were therefore taken into consideration.

θ = y1, θ
′
= y2, φ = y3, φ

′
= y4,

∂θ

∂s
= y5,

∂θ
′

∂s
= y6,

∂φ

∂s
= y7,

∂φ
′

∂s
= y8,

∂θ

∂t
= y9,

∂θ
′

∂s
= y10,

∂φ

∂s
= y11,

∂φ
′

∂t
= y12.

 (3.53)

Joining the above notations, a system of first order ODEs is accomplished that is

expressed below.

y′1 = y2, y1(0) =s,

y′2 = − PrCy2 − PrNby4y2 − PrNty22, y2(0) =−Bi[1− s],

y′3 = y4, y3(0) =1,

y′4 = − LePrCy4 +
Nt

Nb

[
+ PrCy2 + PrNby4y2 + PrNty22

]
, y4(0) =t,

y′5 = y6, y5(0) =1,

y′6 = − PrCy6 − PrNb(y4y6 + y2y8)− 2PrNty2y6, y6(0) =Bi,
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y′7 = y8, y7(0) =0,

y′8 = − LePrCy8 +
Nt

Nb

[
PrCy6 + PrNb(y8y2 + y4y6)

+ 2PrNty2y6

]
, y8(0) =0,

y′9 = y10, y9(0) =0,

y′10 = − PrCy10 − PrNb(y12y2 + y4y10)− 2PrNty2y10, y10(0) =0,

y′11 = y12, y11(0) =0,

y′12 = − LePrCy12 +
Nt

Nb

[
prCy10 + PrNb(y12y2 + y4y10)

+ 2PrNty2yy10

]
, y12(0) =1.

The RK-4 technique has been taken into consideration for tackling the above initial

value problem. For the above system of equations, the missing conditions s and t

are to be specify such that:

(y1(s, t))η = η∞ = 0, (y3(s, t))η = η∞ = 0

(3.54)

The above algebraic equations have been solved by utilizing the Newton’s strategy

represented by the ensuring iterative formula.

s(n+1)

t(n+1)

 =

s(n)
t(n)

−
∂y1(s,t)∂s

∂y3(s,t)
∂s

∂y1(s,t)
∂t

∂y3(s,t)
∂t

−1 y1
y2


(

s(n),t(n),η∞

)

⇒

s(n+1)

t(n+1)

 =

s(n)
t(n)

−
y5 y9

y7 y11

−1 y1
y2


(

s(n),t(n),η∞

) (3.55)

The stoping criteria for the shooting technique is set as:

max{| (y1(ξ∞) |, | (y3(ξ∞)) |} < ε,
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for some exceptionally small positive number ε. All through this chapter, ε has

been taken as 10−12 while η∞ is set as 7.

3.4 Analysis of Results

This section addresses the numerical solutions in detail, using graphs and tables.

This will primarily address the velocity, temperature, and concentration profile.

The present results will be compared with those of [25] for verification of the

code. The numerical calculations are executed for the observation of the impact of

relevant physical parameters like, Casson fluid parameter γ, slip parameter δ, ve-

locity correlation parameter A, Biot number Bi, Brownian motion parameter Nb,

thermophoresis parameter Nt, Lewis number Le on the skin friction coefficient,

Nusselt number, and Sherwood number. Such related physical parameters have

an immediate effect on distributions of velocity , temperature and concentration.

Table 3.1 shows the numerical results of the skin-friction coefficient along with the

Nusselt and sherwood numbers for the current model in respect of a shift in the

values of various parameters such as A, δ, γ, Nb, Nt, Pr, Le, Bi and M . From

the results, it was noted that the skin-friction coefficient decreases for the larger

values of A and δ, while heat and mass transfer rates increase significantly.

Table 3.2 portray the intervals If , Iθ and Iφ where from the missing initial condi-

tions f ′′(0), θ′(0) and φ′(0) respectively can be chosen. It is noteworthy that the

intervals mentioned offer a considerable flexibility for the choice of initial guesses.

3.4.1 Influence of Casson Parameter on The Skin Friction

Figure 3.2 is drawn to investigate the effect of γ on the velocity filed. The fluid

velocity increases with an increasing values of γ. Physically, the consistency of the

fluid increment due to the escalation of the γ values and then decreases, the fluid’s

velocity profile also decreases the velocity boundary layer thickness for uprising
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values of γ. Furthermore, the present phenomenon change to Newtonian fluid

when γ tends to infinity.

3.4.2 Impact of Slip Parameter on The Skin Friction

Figure 3.3 indicates the impact of δ on the distribution of dimensionless velocity.

It is clearly shown that by an an enhancing values of δ the velocity profile arises.

Generally, the growing values of δ create a frictional resistance between the surface

of the sheet and fluid particles escalates, which causes a decrement of the fluid

velocity.

3.4.3 Impact of Velocity Ratio on Skin Friction Parameter

Figure 3.4 analyzes the effect of A on the distribution of dimensionless velocity.

From the figure it is apparent that when the free stream velocity is greater than the

surface velocity, while the fluid particle velocity accelerates at A > 1. In addition

the thickness of the boundary layer decelerates by increasing the A values. In

fact, if the stretching velocity is less than the free-stream velocity the velocity

graph tends to be A. Often, when the extending sheet velocity is greater than the

free-stream velocity, which creates a fluid velocity declaration.

3.4.4 Biot Number Impact on Temperature Profile

Figure 3.5 reflects the influence of Bi on the dimensionless temperature distribu-

tion. The graph of the velocity profile specify that an increment in Bi causes an

enhancement in the temperature profile. Generally, Biot number is expressed as

the ratio of temperature change at the surface to conduction within the surface of

the body. As expected, the boosting values of Bi enhanced the thermal boundary

layer of the fluid.



MHD Casson Nanofluid 34

3.4.5 Influence of Brownian Motion Parameter on Profile

Temperature

Figure 3.6 analyzes the impact of Nb on the temperature profile. The temperature

distribution enhances with the uprising values of Nb. It is observed that a higher

Nb intensifies the fluid temperature owing to more collision between the fluid

particles.

3.4.6 Impact of Thermophoresis Parameter on The Tem-

perature Profile

Figure 3.7 illustrates the Nt effect on temperature distribution. From the figure

it is transparent that the θ field is improved for moderately enlarging values of

Nt. In addition, the particles Nt apply a force on the other particles because of

which these particles shift from the hotter to less region. Therefore, there is an

intensification of the fluid’s θ profile.

3.4.7 Impact of Slip Parameter on The Temperature Pro-

file

Figure 3.8 illustrates the influence of δ on temperature distribution, from the figure

it is apparent that especially for cautiously enlarging values of δ, the temperature

field is enhanced. Increasing the values of δ actually the thermal boundary layer

depth also raises the sheet surface temperature.

3.4.8 Effect of Velocity Ratio on The Temperature Profile

Figure 3.9 displays the effect of A on temperature distribution. We note that for

boosting A values, the temperature distribution decreases. In addition, the depth

of the thermal boundary layer decreases as the values of A increase.
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3.4.9 Impact of Casson Parameter on The Temperature

Profile

Figure 3.10 reveals the impact of γ on temperature distribution. The escalating

values of γ by which the mounting values of temperature depiction. Generally the

thermal boundary layer depth uprise by increasing values of γ due to which the

surface temperature enlarge with γ.

3.4.10 Impact of Lewis Number on Profile of Concentra-

tion

Figure 3.11 shows the connection between Lewis numbers and the dimensional

concentration distribution. Concentration profile decelerates for the boosting val-

ues of Le and therefore we have get a small molecular diffusivity and thermal

boundary layer.

3.4.11 Impact of Biot Number on Profile of Concentration

Figure 3.12 manifests the relationship between Bi and the concentration profile.

For boosting values of Bi the graph of dimensionless concentration profile is in-

creased. Increasing Bi means a decrement in the fluid’s conductivity as a result

of which the boundary layer of concentration is increased.

3.4.12 Impact of Thermophoresis Parameter on Profile of

Concentration

Figure 3.13 illustrates the impact of Nt on both temperature and concentration

distribution, from the figure it is clear that for gradually enlarging values of Nt

both the temperature and concentration field is enhanced.
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3.4.13 Impact of Casson Parameter on The Skin Friction

Figure 3.14 shows the relationship between γ and the concentration profile. More-

over, the concentration of fluid and its associative boundary thickness are enlarges

by mounting values of γ. Figures [3.15]-[3.17] are sketched to demonstrate the

effect of skin friction coefficient against magnetic parameter to increase values of

Casson parameter, slip parameter and velocity ratio parameter.

3.4.14 Impact of Casson Parameter on The Skin Friction

It is noted in Figure 3.15 that with an increment in the Casson fluid parameter the

skin friction coefficient decreases significantly, which implies that the drag forces

on the surface reduces effectively.

3.4.15 Effect on Skin Friction by Slip Parameter

Figure 3.16 reflect that the skin friction coefficient increases effectively with in-

creased slip parameter.

3.4.16 Effect of Parameter Velocity Ratio on Skin Friction

Figure 3.17 displays that with an enhancement in velocity ratio parameter, the

skin friction coefficient reduces effectively.

3.4.17 Impact of The Nusselt Number on The Brownian

Motion Parameter

Figure 3.18 portrays the impact of Nb on Nux plotted against Nt. As the estima-

tions of the two parameters Nt and Nb increases, the nearby Nux decreases.
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3.4.18 Lewis Number Effect on The Sherwood Number

Figure 3.19 displays the impact of Le on Shx as for Biot number. It is seen

that local Sherwood number increases with an increase in the Lewis number. It

can be noted that,the field Nux is also increased by enhancing the values of Le

whenever the Nux expands; as the estimations of Bi as well increases the nearby

Shx decreases.

Table 3.1: “Numerical results of the coefficient of skin friction , Nusselt, and
Sherwood numbers”.

A δ γ Nb Nt Pr Le Bi M −f ′′(0) −θ′(0) −φ′(0)

0.0 0.1 10 0.1 0.1 10 10 0.1 1.0 1.1415 0.0894 7.2259

0.1 — — — — — — — — 1.0653 0.0896 7.2857

0.2 — — — — — — — — 0.9792 0.0898 7.3519

0.3 — — — — — — — — 0.8838 0.0900 7.4237

0.9 — — — — — — — — 0.1467 0.0911 7.9377

1.5 — — — — — — — — -0.8188 0.0920 8.5325

2.0 — — — — — — — — -1.7623 0.0926 9.0553

2.4 — — — — — — — — -2.5944 0.0930 9.4812

0.4 0.2 — — — — — — — 0.6758 0.0899 7.2452

— 0.4 — — — — — — — 0.5357 0.0894 6.8775

— 0.6 — — — — — — — 0.4449 0.0891 6.6223

— 0.8 — — — — — — — 0.3810 0.0888 6.4333

— 0.4 0.1 — — — — — — 0.0908 0.0887 6.2009

— — 0.5 — — — — — — 0.2563 0.0892 6.6086

— — 1 — — — — — — 0.3477 0.0893 6.7254

— — 10 — — — — — — 0.5357 0.0894 6.8776

— — 10 — — — — — — 0.5688 0.0894 6.8968
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Table 3.2: “The intervals for the initial guesses for the missing initial condi-
tions”.

A δ γ Nb Nt Pr Le Bi M If Iθ Iφ

0.0 0.1 10 0.1 0.1 10 10 0.1 1 [-1.0,-0.9] [-1.1,20.4] [-1.1,30.7]

0.1 — — 0.1 0.1 10 10 0.1 1 [-0.9,-0.5] [-1.0,30.5] [-1,40.7]

0.2 — — — — — — — — [-1.0,-0.3 ] [-1.0,30.6] [-1.0,40.5]

0.3 — — — — — — — — [-0.9,0.2] [-0.9,1.8] [-0.9,0.9]

0.9 — — — — — — — — [-0.1,1.2] [-0.1,1.5] [-0.1,1.6]

1.5 — — — — — — — — [1.0,1.5] [1.0,1.9] [1.0,2.5]

2.0 — — — — — — — — [1.7,2.8] [1.7,10.9] [1.7,9.9]

2.4 — — — — — — — — [2.5,3.6] [-0.5,195.5] [-0.5,20.5]

0.4 0.2 — — — — — — — [-0.7,0.4] [-0.9,99.5] [-0.9,88.2]

— 0.4 — — — — — — — [-0.5,0.3] [-0.9,85.0] [-0.9,72.5]

— 0.6 — — — — — — — [-0.4,0.2] [-0.5,110.0] [-0.5,130.0]

— 0.8 — — — — — — — [-0.5,0.3] [-0.7,210.1] [-0.7,215.0]

— 0.4 0.1 — — — — — — [-0.3,3.2] [-0.9,45.5] [-0.9,80.0]

— — 0.5 — — — — — — [-0.4,0.2] [-0.9,85.0] [-0.9,80.0]

— — 1 — — — — — — [-0.3,1.3] [-2.5,70.0] [-2.5,85.0]

— — 10 — — — — — — [-0.5,0.3] [-2.5,70.0] [-2.5,85.0]

— — 10 — — — — — — [-0.6,0.2] [-3.5,80.9] [-3.5,89.1]
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Figure 3.2: “Influence of γ on f ′(η) when δ = 0.1, A = 2.3, M = 1”
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Figure 3.3: “Influence of δ on f ′(η) when γ = 0.1, A = 0.4, M = 1”
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Figure 3.4: “Impact of A on f ′(η) when γ = 0.1, δ = 0.1, M = 1”
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Figure 3.5: “Influence of Bi on θ(η) when Nb = Nt = 0.5, Le = 2, γ = 0.1,
δ = 0.2, Pr = M = 1, A = 0.4”
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Figure 3.6: “Influence of Nb on θ(η) when Nt = 0.5, Le = 2, γ = 0.1, δ = 0.2,
Pr = M = 1, A = 0.4”
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Figure 3.7: “Influence of Nt on θ(η) when Nb = 0.5, Le = 2, γ = 0.1,
Bi = 0.5, δ = 0.2, Pr = M = 1, A = 0.4”
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Figure 3.8: “Impact of δ on θ(η) when Nb = Nt = 0.5, Le = 2, γ = 0.1,
Bi = 0.5, Pr = M = 1, A = 0.4”
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Figure 3.9: “Influence of A on θ(η) when Nb = Nt = 0.5, Le = 2, γ = 0.1,
Bi = 0.5, Pr = M = 1, Bi = 0.5, δ = 0.2”
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Figure 3.10: “Influence of γ on θ(η) when Nb = Nt = 0.5, Le = 2, A = 0.4,
Bi = 0.5, Pr = M = 1, δ = 0.2”
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Figure 3.11: “Impact of Le on φ(η) when Nb = Nt = Bi = 0.1, Pr = 5,
A = 0.4, Bi = 0.5, M = 1, δ = 0.1, γ = 0.2”
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Figure 3.12: “Influence of Bi on φ(η) when Nb = Nt = 0.1, Pr = 5, A = 0.4,
M = 1, δ = 0.1, γ = 0.2”
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Figure 3.13: “Impact of Nt on φ(η) when Nb = 0.1, Pr = 5, A = 0.4, M = 1,
δ = 0.1, Bi = γ = 0.2”
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Figure 3.14: “Influence of γ on φ(η) when Nb = Nt = 0.2, Pr = M = 1,
A = 0.4, M = 1, δ = 0.1, Bi = 0.5, A = 0.4”
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Figure 3.15: “Impact of γ on −f ′′
(0) when Nb = Nt = 0.1, Pr = 2, A = 0.1,

Bi = 10, δ = 0.2”
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Figure 3.16: “Impact of δ on −f ′′
(0) when Nb = Nt = 0.1, Pr = 2, A = 0.1,

Bi = 10, γ = 10”
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Figure 3.17: “Impact of A on −f ′′
(0) when Nb = Nt = 0.1, Pr = 2, δ = 1,

Bi = 10, γ = 1”
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Figure 3.18: “Impact of Nb on −θ′(0) when A = 0.4, Pr = M = 1, δ = 0.2,
γ = 0.1”
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Figure 3.19: “Influence of Le on −φ′
(0) when Nb = Nt = 0.1, A = 0.4,

Pr = 5, M = 1, δ = 0.1, γ = 0.2”



Chapter 4

Impact of Slip Wall on MHD

Casson Nanofluid in the Presence

of Viscous Dissipation and

Thermal Radiation

4.1 Introduction

This chapter describes the flow of Casson nanofluid due to a linear stretch sheet

along with the slip wall. Mechanism of heat and mass transport is also performed

in the existence of Brownian motion and thermophoretic diffusion effect. Through

an effective transformation, the PDEs are converted into dimensionless ODEs. To

obtain the numerical solution for the considered model, shooting technique has

been introduced. Numerical solutions are acquired for the velocity, temperature,

and concentration profiles. The behavior of few pertinent emerging flow parame-

ters are portrayed graphically. In addition, physical quantities are shown graphi-

cally. A detailed review work of Ibrahim and Makinde [25] has been presented in

this chapter.

48
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4.2 Mathematical Modeling

This chapter explains the 2-D stagnation point flow of MHD Casson nanofluid

over an extending sheet under the impact of slip wall. An applied magnetic field

of strength B0 is applied perpendicular to the fluid motion. Additionally consider

the impacts of Brownian motion and thermophoretic diffusion. Furthermore, the

equations of energy and mass transport are also known to determine the profiles

of temperature and concentration. The Cartesian coordinate system is regarded

in such a way that x-axis is plated along the stretching plate and y- axis is normal.

The stretching and slip velocities at the boundary are taken as Uw(x) = ax and

Uslip =

(
µB + Py√

2πc

)
∂u
∂y

respectively, and Cw is the concentration at the wall,

where U∞ = bx, T∞ and C∞ represents the free stream velocity, temperature and

concentration. Here Tw is the surface temperature. The graphical view of physical

model is dispensed in Figure 4.1.

Figure 4.1: “Physical representation of the problem”

∂u

∂x
+

∂v

∂y
= 0, (4.1)

u
∂u

∂x
+ v

∂u

∂y
= ν

(
1 +

1

γ

)
∂2u

∂y2
+ U∞

∂U∞
∂x

+
σB2

0

ρf
(U∞ − u), (4.2)
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u
∂T

∂x
+ v

∂T

∂y
=α

∂2T

∂y2
+ Γ

[
DB

∂C∂T

∂y∂y
+

DT

T∞

(
∂T

∂y

)2]
+

ν

Cp

(
1 +

1

γ

)(
∂u

∂y

)2

− 1

(ρC)f

∂qr
∂y

, (4.3)

u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+

DT∂
2T

T∞∂y2
−K0(C − C∞). (4.4)

The related boundary conditions can be described as:

u = Uw(x) + USlip → u = ax+

(
µB +

Py√
2πc

)
∂u

∂y
,

v = 0, −k∂T
∂y

= hf (Tf − T ), C = Cw at y = 0,

u→ U∞ = bx, v = 0, T → T∞,

C → C∞ as y →∞


(4.5)

Here, u and v are components of velocity in the direction of x and y respectively,

ρf is the fluid density, σ denotes the electrical conductivity, T represents the

temperature, α is the thermal diffusivity, Γ represents the relation among heat

capacity of the antiparticle and the liquid, C is the concentration parameter,

µB represents the dynamic viscosity, Py denotes the yield stress, πc represents

the critical value of product, k denotes the thermal conductivity, hf denotes the

coefficient of heat transfer and a and b are positive constant.

4.2.1 Similarity Transformation

This section introduced the similarity transformation.

η = y

√
a

ν
, ψ =

√
aνxf(η),

θ(η) =
T − T∞
Tw − T∞

, φ(η) =
C − C∞
Cw − C∞

.

 (4.6)

The point by point procedure for the verification of the continuity Eqn. (4.1) has

been examined in 3. For the conversion of (4.2)-(4.4) into the dimensionless form
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has been depicted in the upcoming discussion.

As,

θ(η) =
T − T∞
Tw − T∞

,

T = T∞+ (Tw − T∞)θ(η),

∂T

∂x
= 0 + (Tw − T∞)θ′

∂η

∂x
, ∵

(
∂η

∂x
= 0

)
,

• ∂T

∂y
= 0 + (Tw − T∞)θ′

∂η

∂y
,

∂η

∂y
=

√
a

ν
(Tw − T∞)θ′,

• ∂2T

∂y2
=

√
a

ν
(Tw − T∞)θ′′

∂η

∂y
,

∂2T

∂y2
=

√
a

ν
(Tw − T∞)θ′′

√
a

ν
, ∵

(
∂η

∂y
=

√
a

ν

)
.

∂2T

∂y2
=
a(Tw − T∞)

ν
θ′′, (4.7)

Also,

φ(η) =
C − C∞
Cw − C∞

, (4.8)

• C = C∞ + (Cw − C∞)φ(η),

∂C

∂x
= 0 + (Cw − C∞)φ′

∂η

∂x
,

∂C

∂x
= 0, ∵

(
∂η

∂x
= 0

)
• ∂C

∂y
= 0 + (Cw − C∞)φ′

∂η

∂y
,

=

√
a

ν
(Cw − C∞)φ′,

• ∂2C

∂y2
=

√
a

ν
(Cw − C∞)φ′′

∂η

∂y
,

=
a

ν
(Cw − C∞)φ′′. (4.9)
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Also

• ∂u

∂y
=
∂(axf

′
)

∂y
,

= axf
′′ · ∂η

∂y
,

=
∂a3x2

ν
· (f ′′

)2. (4.10)

The expression qr is for radiative heat flux.

• qr = − 4σ∗

3K1

∂T 4

∂y
. (4.11)

Expanding T 4 to about T∞,

T 4 = T 4
∞ + 4T 3

∞(T − T∞) + ...,

Ignoring the higher order terms

T 4 = 4T 3
∞T − 3T 4

∞, (4.12)

Using (4.12) in (4.11) we get,

= − 4σ∗

3K1

∂

∂y
(4T 3

∞T − 3T 4
∞),

= −16σ∗

3K1

(T 3
∞)
∂T

∂y
, (4.13)

Using values of (4.11) and (4.13) in (4.3) we get

0 + (−
√
aνf)(

√
a

ν
)(Tw − T∞)θ

′
=
α a(TwT∞)θ

′′

ν
+ Γ

DT

T∞

√
a

ν
θ
′

+ ΓDB

√
a

ν
(Cw − C∞)φ

′ ·
√
a

ν
(Tw − T∞)θ

′

+ Γ
DT

T∞

√
a

ν
(Tw − T∞)θ

′
2

+
ν

Cp
(1 +

1

γ
)
a3x2

ν
(f ′′)2

− 1

(ρC)f

∂

∂y

[
(− 16

3k1
)σ∗T 3

∞
∂T

∂y

]
,



MHD Casson Nanofluid 53

−a(Tw − T∞)fθ
′
=
α a(Tw − T∞)θ

′′

ν
+

1

(ρC)f

16

3K1

Σ∗T 3
∞
∂2T

∂y2

+ Γ
DB

ν
a(Cw − C∞)(Tw − T∞)φ

′
θ
′

+ Γ
a

ν

DT

T∞
(Tw − T∞)2(θ

′
)2 +

ν

Cp
(1 +

1

γ
)
a3x2

ν
(f ′′)2,

−a(Tw − T∞)fθ
′
=
α a(Tw − T∞)θ

′′

ν
+

1

(ρC)f

16

3K1

Σ∗T 3
∞
a

ν
(Tw − T∞)θ

′′

+ Γ
DB

ν
a(Cw − C∞)(Tw − T∞)φ

′
θ
′

+ Γ
a

ν

DT

T∞
(Tw − T∞)2(θ

′
)2 +

ν

Cp
(1 +

1

γ
)
a3x2

ν
(f ′′)2, (4.14)

Using Γ = (ρC)p
(ρC)f

in (4.14)

−a(Tw − T∞)fθ
′
=
α a(Tw − T∞)θ

′′

ν
+

(ρC)p
(ρC)f

a

ν
DB(Cw − C∞)(Tw − T∞)φ

′
θ
′

+
a

ν

DT

T∞
(Tw − T∞)2(θ

′
)2 +

ν

Cp
(1 +

1

γ
)
a3x2

ν
(f ′′)2

+
1

(ρC)f

16

3K1

Σ∗T 3
∞
a

ν
(Tw − T∞)θ

′′
, (4.15)

Multiply each term of (4.15) by ν
α a(Tw−T∞)

−ν
α
fθ

′
=θ

′′
+

(ρC)p
(ρC)f α

DB(Cw − C∞)φ
′
θ
′
+

(ρC)p
(ρC)f α

DT

T∞
(Tw − T∞)(θ

′
)2

+
a2x2

Cp(Tw − T∞)

ν

α
(1 +

1

γ
)(f

′′
)2 +

1

(ρC)f

16

3K1

σ∗T 3
∞

1

α
θ
′′
,

So

−Prfθ
′
=θ

′′
+

(ρC)p
α(ρC)f

DB(Cw − C∞)φ
′
θ
′

+
(ρC)p
(ρC)f

DT (Tw − T∞)(θ
′
)2

+
a2x2

Cp(Tw − T∞)
· ν
α

(1 +
1

γ
)(f

′′
)2

+
1

K

16

3k1
σ∗T 3

∞θ
′′
, (4.16)
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Multiplying and dividing of (4.16) by ν
ν

−Prfθ
′
=θ

′′
+
ν

α

(ρC)p
ν(ρC)f

DB(Cw − C∞)φ
′
θ
′
+
ν

α

(ρC)p
(ρC)f

DT

T∞
(Tw − T∞)(θ

′
)2

+
a2x2

Cp(Tw − T∞)
· ν
α

(1 +
1

γ
)(f

′′
)2 +

16

3Kk1
σ∗T 3

∞θ
′′
. (4.17)

As,

Nb =
(ρC)pDB(Cw − C∞)

(ρC)fν
, Nt =

(ρC)pDT (Tw − T∞)

(ρC)fνT∞
(4.18)

And
4

3

4

kk1
Σ∗T 3

∞θ
′′
,

R =
kk1

4σ∗T 3
∞
,

1

R
=

4Σ∗T 3
∞

kk1
,

1

R
=

4

3R
θ
′′
. (4.19)

As,

Ec =
U2
w

Cp(Tw − T∞)
, (4.20)

Using values of (4.18), (4.19) and (4.20) in (4.17) then (4.17) becomes,

− Prfθ
′
= θ

′′
+NbPrφ

′
θ
′
+NtPr(θ

′
)2 + EcPr(1 +

1

γ
)(f

′′
)2 +

4

3R
θ
′′
,

θ
′′

+ Prfθ
′
+NbPrφ

′
θ
′
+NtPr(θ

′
)2 + EcPr(1 +

1

γ
)(f

′′
)2 +

4

3R
θ
′′

= 0,

(1 +
4

3R
)θ

′′
+ Prfθ

′
+ PrNbφ

′
θ
′
+NtPr(θ

′
)2 + EcPr(1 +

1

γ
)(f

′′
)2. (4.21)

Using all converted expressions in (4.4)

0 + (−
√
aνf) ·

√
a

ν
f(Cw − C∞)φ

′
=DB

a

ν
(Cw − C∞)φ

′′
+
DT

T∞

a

ν
(Tw − T∞)θ

′′

− k0[(Cw − C∞)φ+ C∞ − C∞],



MHD Casson Nanofluid 55

−
√
aν
a

ν
(Cw − C∞)fφ

′
=
DB

ν
a(Cw − C∞)φ

′′
+
DT

T∞

a

ν
(Tw − T∞)θ

′′

− k0[(Cw − C∞)φ],

− a(Cw − C∞)fφ
′
=
DB

ν
a(Cw − C∞)φ

′′
+
DT

T∞

a

ν
(Tw − T∞)θ

′′ − k0[(Cw − C∞)φ].

(4.22)

Multiplying each term of (4.22) by ν
a DB(Cw−C∞)

− ν

DB

fφ′ = φ
′′

+
DT

DBT∞

(Tw − T∞)

(Cw − C∞)
θ
′′ − ν(Cw − C∞)

aDB(Cw − C∞)
φ k0, (4.23)

As,

LePr =
α

DB

· ν
α
,

LePr =
ν

DB

, (4.24)

And

Nt

Nb

=
(ρC)pDT (Tw − T∞)

(ρC)fνT∞
÷ (ρC)pDB(Cw − C∞)

(ρC)fν
,

=
(ρC)pDT (Tw − T∞)

(ρC)fνT∞
× (ρC)fν

(ρC)pDB(Cw − C∞)
,

=
DT (Tw − T∞)

DBT∞(Cw − C∞)
, (4.25)

Using (4.24) and (4.25) in (4.23) we get

− ν

DB

fφ
′
= φ

′′
+

DT (Tw − T∞)

DBT∞(Cw − C∞)
θ
′′ − ν

aDB

φk0,

− LePrfφ
′
= φ

′′
+
Nt

Nb

θ
′′ − Le

1

a
φk0 ∵

(
Le =

ν

DB

)
φ

′′
+ LePrfφ

′
+
Nt

Nb

θ
′′ − Le

k0
a
φ = 0 ∵

(
k =

k0
a

)
.

The detailed procedure for the conversion of equations (4.3)-(4.4) and boundary

conditions into the dimensionless form is similar to that discussed in (3). Finally,
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the ODEs describing the proposed ow problem can be re-collected in the following

system.

(1 +
4

3R
)θ

′′
+ Prfθ

′
+ PrNbφ

′
θ
′
+NtPr(θ

′
)2 + EcPr(1 +

1

γ
)(f

′′
)2 (4.26)

φ
′′

+ LePrfφ
′
+
Nt

Nb

θ
′′ − Le

k0
a
φ = 0. (4.27)

The transform boundary conditions are stated below:

f(0) = 0,

f
′
(0) = 1 + δ

(
1 +

1

γ

)
f

′′
(0),

θ
′
(0) = −Bi[1− θ(0)], φ(0) = 1, at η = 0,

f
′
(∞)→ A, θ(∞)→ 0, φ(∞)→ 0, as η →∞.


(4.28)

The description of different parameters used in the above equations shall be as

follows:

A =
b

a
,

Pr =
ν

α
,

M =
σB2

0

ρfa
,

δ = µβ

√
a

ν
,

Le =
α

DB

,

Bi =
hf
k

√
ν

a
,

Nb =
(ρC)p

(ρC)fν
DB(Cw − C∞),

Nt =
(ρC)p

(ρC)fν
DT (Tw − T∞).



(4.29)

The skin friction coefficient, is given as follows:

Cf =
τw
ρu2w

, (4.30)
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where

τw =

(
µB +

Py√
2πc

)(
∂u

∂y

)
,

= µ
(
1 +

Py
µ
√

2πc

)(
∂u

∂y

)
,

= τµB

(
1 +

1

γ

)
∂u

∂y
, (4.31)

uw(x) = ax, (4.32)

∂u

∂y
= axf

′′
√
a

ν
,

= a

√
a

ν
xf

′′
, (4.33)

Using Eqn. (4.33) in (4.31) and (4.31) in (4.30) , we get

Cf =

µB

(
1 + 1

γ

)
a
√

a
ν
xf

′′

ρa2x2
,

=

ν√
ν

(
1 + 1

γ

)
a
√
axf

′′

a2x2
,

=

ν√
ν

(
1 + 1

γ

)
a
√
axf

′′

ax
,

=

√
ν√
ax

(
1 +

1

γ

)
f

′′
, (4.34)

Cf

√
a√
ν

√
x
√
x =

(
1 +

1

γ

)
f

′′
,

Cf

√
ax√
ν

√
x =

(
1 +

1

γ

)
f

′′
,

Cf

√
uw
√
x√

ν
=

(
1 +

1

γ

)
f

′′
. (4.35)

As

Rex =
Uw.x

ν
, (4.36)
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so

Re
1
2
x =

U
1
2
w .x

1
2

ν
1
2

=

√
uw
√
x√

ν

CfRe
1
2
x =

(
1 +

1

γ

)
f

′′
. (4.37)

The local Nusselt number is specified as:

Nux =
xqw

k(Tw − T∞)
,

where

qw = −k
(
∂T

∂y

)
y=0

,

and
∂T

∂y
=

√
a

ν

(
Tw − T∞

)
θ′(0) (4.38)

Using Eqn. (4.38) in (4.38) and (4.38) in (4.38)

Nux = −x
√
a

ν
θ′(0)

⇒ Nux = −
√
x
√
x
√
a

θ
′√ν

⇒ Nux = −
√
x
√
ax

θ
′√ν

⇒ Nux = −
√
Rex θ′(0). (4.39)

The local Sherwood number is specified as:

Shx =
xhm

DB

(Cw − C∞), (4.40)

hm = −DB

(
∂φ

∂y

)
, (4.41)

∂φ

∂y
= (Cw − C∞)φ

′
.
∂η

∂y
+ 0,

=

√
a

ν
(Cw − C∞)φ

′
, (4.42)
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Using Eqn. (4.42) in Eqn. (4.38)

hm = −DB

√
a

ν
(Cw − C∞)φ

′
(0), (4.43)

Using Eqn. (4.43) in (4.41)

Shx = −
xDB

√
a
ν
(Cw − C∞)φ

′
(0)

DB(Cw − C∞)
,

= −x
√
a

ν
φ

′
(0),

=
−
√
x
√
axφ(0)

√
ν

,

= −
√
Rx φ

′
(0),

⇒ Shx√
Rx

= −φ′
(0). (4.44)

4.3 Solution Technique

In order to solve the arrangement of ODEs (4.46)- (4.50) subject to the boundary

conditions (4.51), the shooting technique has been used. Basically equation (4.46)

is solved numerically and afterward the computed results of f , f
′

and f
′′

are used

in equations (4.47)-(4.50). For the numerical treatment of equation (4.46), the

missing initial condition f
′′
(0) has been denoted as p and the following notations
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have been considered.

f = g1,

f ′ = g′1 = g2,

f ′′ = g′′1 = g′2 = g3,

∂f

∂p
= g4,

∂f
′

∂p
= g5,

∂f
′′

∂p
= g6,

(4.45)

Using the above notes, equation (4.46) can be translated into a scheme of three

first order ODEs. The reduced form of (4.46) is the first three of the ODEs, and

the remaining three are obtained by differentiating the first three w.r.t p.

g
′

1 = g2; g1(0) = 0

g
′

2 = g3; g2(0) = 1 + δ

(
1 +

1

γ

)
g

g
′

3 =
γ

γ + 1

[
−g1g3 + g22 − A2 −M(A− g2)

]
; g3(0) = p

g
′

4 = g5; g4(0) = 0

g
′

5 = g6; g5(0) = δ

(
1 +

1

γ

)
g

′

6 =
γ

γ + 1

[
−g4g3 − g1g6 + 2g2g5 +Mg5

]
; g6(0) = 1

The RK-4 technique has been used to tackle the above initial value problem. In

order to get the approximate numerical results , the problem’s domain is considered

to be bounded i.e [0, η∞], where η∞ is chosen to be an appropriate finite positive

real number so that the variation in the result for η m η∞ is ignorable. The missing

condition for the above system of equations is to be picked to such an extent that

(g2(∞))p = A. This mathematical equation was solved by using the technique of
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the Newton as illustrated by the following iterative scheme.

p(n+1) = p(n) −
(g2(η∞))g=g(n) − A(

∂g2(η∞)
∂g

)
p=p(n)

, (4.46)

p(n) −
(g2(η∞))p=p(n) − A

(g2(η∞))p=p(n)

, (4.47)

The stopping criteria for the shooting strategy is set as:

|(g2(η∞))− A|l ε, (4.48)

for some sufficiently small positive number ε.

4.4 Results and Discussion

Within this section, the numerical solutions are discussed in detail using graphs

and tables. We will primarily address the profile of velocity, temperature , and

concentration. The present results will be compared with those of [25] for verifi-

cation of the code. The numerical calculations are executed for the observation

of the impact of relevant physical parameters like, Casson fluid parameter γ, slip

parameter δ, velocity correlation parameter A, Biot number Bi, Brownian mo-

tion parameter Nb, thermophoresis parameter N(t), Lewis number Le on the skin

friction coefficient, Nusselt number, and Sherwood number. Such related physical

parameters have an immediate effect on distributions of velocity, temperature ,

and concentration.

Table 4.1 shows the numerical results of the skin-friction coefficient along with

Nusselt and sherwood numbers for the current model in respect of a shift in the

values of various parameters such as A, δ, γ, Nb, Nt, Pr, Le, Bi, M , Ec, R and

K. From the results it was noted that the skin-friction coefficient decreases for the

larger values of A and δ, while heat and mass transfer rates increase significantly.
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Table 4.2 portray the intervals If , Iθ and Iφ where from the missing initial condi-

tions f ′′(0), θ′(0) and φ′(0) respectively can be chosen. It is noteworthy that the

intervals mentioned offer a considerable flexibility for the choice of initial guesses.

4.4.1 Influence of Casson Parameter on Skin Friction

Figure 4.2 is the graphical representation which depicts the γ on the velocity filed.

The fluid velocity rises with escalating the values of γ. Physically the viscosity of

the fluid increases due to enhancing the values of γ which in turn declines the ve-

locity profile of the fluid, also for enlarging values of γ, the velocity boundary layer

thickness diminishes. Furthermore, the present phenomenon change to Newtonian

fluid when γ tends to infinity.

4.4.2 Impact of Slip Parameter on Skin Friction

Figure 4.3 exhibits the influence of δ on the dimensionless velocity distribution. It

is clearly manifest the velocity profile escalates by mounting values of δ. Generally,

the growing values of δ create a frictional resistance between the surface of the

sheet and fluid particles enhance, which causes a decrement of the fluid velocity.

4.4.3 Impact of Velocity Ratio on Skin Friction Parameter

Figure 4.4 analyzes the effect of A on the distribution of dimensionless velocity.

From the figure it is apparent that when the free stream velocity is greater than the

surface velocity, while the fluid particle velocity accelerates at A > 1. In addition

the thickness of the boundary layer decelerates by increasing the A values. In

fact, if the stretching velocity is less than the free-stream velocity the velocity

graph tends to be A. Often, when the stretching sheet velocity is greater than the

free-stream velocity, which creates a fluid velocity declaration.
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4.4.4 Biot Number Impact on Temperature Profile

Figure4.5 demonstrates the effect of Bi on the dimensionless temperature distri-

bution. The graph of the velocity profile demonstrate that an enlargement in Bi

causes an enhancement in the temperature profile. Generally, Biot number can

be expressed as the ratio of convection at the surface to conduction within the

surface of the body. As expected, the boosting values of Bi enhanced the thermal

boundary layer of the fluid.

4.4.5 Temperature Profile Under The Effect of Brownian

Motion

Figure 4.6 depicts the impact of Nb on the temperature profile. The temperature

distribution enhances with the uprising values of Nb. It is observed that a inflated

Nb strengthens the fluid temperature owing to more collisions between the fluid

particles.

4.4.6 Thermophoresis Parameter Effects on Temperature

Profile

Figure 4.7 portrays the effect of Nt on temperature distribution, the temperature

field is obviously improved from the calculation for step by step extending values

of Nt. In addition, the particles Nt apply a force on the other particles because

of which these particles shift from hotter to less region. Therefore, there is an

enhancement in the fluid’s temperature profile.

4.4.7 Impact of Temperature Profile on Slip Parameter

Figure 4.8 delineates the impact of δ on temperature distribution, from the fig-

ure clearly for step by step growing values of δ the temperature field is decline.
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Furthermore, the thermal boundary layer thickness is reduced. Moreover the tem-

perature boundary layer thickness also shows a declining behavior.

4.4.8 Effect of Parameter Velocity Ratio on Temperature

Profile

Figure 4.9 illustrates the impact of A on dimensionless temperature profile. We

see that for boosting values of A the temperature distribution declines. More-

over, increasing the values of A by which the thermal boundary layer thickness

diminishes.

4.4.9 Casson Parameter Effect on Temperature Profile

Figure 4.10 displays the impact of γ on temperature distribution. The boosting

values of γ escalating temperature profile. Generally the thermal boundary layer

thickness build up by increasing values of γ due to which the surface temperature

enlarge with γ.

4.4.10 Impact of Lewis Number on Profile of Concentra-

tion

Figure 4.11 shows the relationship between Lewis numbers and the dimensional

concentration distribution. Concentration profile decelerate for the boosting val-

ues of Le and thus we have get a small molecular diffusivity and thermal boundary

layer. Physically, concentration distribution is a reducing function of Lewis num-

ber.
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4.4.11 Effect of Biot Number on Profile of Concentration

Figure 4.12 shows the relationship between Bi and the concentration profile. For

boosting values of Bi the graph of dimensionless concentration profile is increased.

Increasing Bi means a reduction in the conductivity of the fluid due to which the

concentration boundary layer is enhanced.

4.4.12 Thermophoresis Effect Parameter on Concentration

Profile

Figure 4.13 shows the effect of Nt on both temperature and concentration dis-

tribution, from the figure it is pellucid that both the θ temperature and the φ

concentration area are enhanced for cautiously enlarging values of Nt. In Nt the

particles actually apply a force on the other particles because of which these par-

ticles move from the hotter to less zone. Hence an boost in the fluid’s θ and φ

profile.

4.4.13 Impact of Casson Parameter on Profile of Concen-

tration

Figure 4.14 exhibits the relationship between γ and concentration profile. Actu-

ally concentration of fluid and its associative boundary thickness are increases by

mounting values of γ. Figures [4.15]-[4.17] are sketched to demonstrate the effect

of skin friction coefficient against magnetic parameter to increase values of Casson

parameter, slip parameter and velocity ratio parameter.

4.4.14 Impact of Casson Parameter on Skin Friction

It is noted in Figure 4.15 that with an increase in the Casson fluid parameter the

skin friction coefficient decreases significantly, which implies that the drag forces

on the surface reduces effectively.
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4.4.15 Effect on Skin Friction by Slip Parameter

Figure 4.16 reflect that with an increase in the slip parameter the skin friction

coefficient increases effectively.

4.4.16 Effect of Parameter Velocity Ratio on The Skin

Friction

Figure 4.17 displays that that with an enhancement in velocity ratio parameter

the skin friction coefficient reduces effectively.

4.4.17 Impact on Nusselt Number of The Brownian Mo-

tion Parameter

Figure 4.18 shows the impact of Nb on Nux plotted against Nt. As the estimations

of the two parameters Nt and Nb increases, the nearby Nux decreases.

4.4.18 Lewis Number Effect on Sherwood Number

Figure 4.19 displays the impact of Le on Shx as for Biot number. It is seen that

local sherwood number rises with an increment in the Lewis number. It can be

noted that, the field Nux is also increased by enhancing the values of Le whenever

the Nux extends; as the values of Bi as well increases the nearby Shx decreases.
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Table 4.1: The computed results of skin friction coefficient, Nusselt and Sher-
wood numbers for various estimations of δ and γ and A and Ec and R and K.

When “Nb = Nt = 0.1, P r = Le = 10, Bi = 0.1, and M = 1”.

A δ γ Ec R k −f ′′(0) −θ′(0) −φ′(0)

0.0 0.1 10 0.1 0.1 0.5 1.1415 0.0731 7.5077

0.1 — — — — — 1.0653 0.0745 7.5646

0.2 — — — — — 0.9792 0.0748 7.6278

0.3 — — 0.5 0.7 1.5 0.8838 0.0237 7.6278

0.9 — — — — — 0.1467 -0.0615 8.4417

1.5 — — 1.0 1.0 — -0.8188 -0.4864 8.9666

2.0 — — — — — -1.7623 -0.0724 10.8472

2.4 — — — — — -2.5944 -0.9483 11.4924

0.4 0.2 — — — — 0.6758 -0.0775 8.5189

— 0.4 — — — — 0.5357 -0.0669 8.1344

— 0.6 — — — — 0.4449 -0.0602 7.8735

— 0.8 — — — — 0.3810 -0.0556 7.6835

— 0.4 0.1 — 0.1 — 0.0908 -0.8725 7.7625

— — 0.5 — 1.0 — 0.2563 -0.4145 8.4529

— — 1 — — — 0.3477 -0.2163 8.2658

— — 10 — — — 0.5357 -0.0669 8.1344

— — 10 — — — 0.5688 -0.0531 8.1244
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Table 4.2: The intervals for the initial guesses for the missing initial conditions
when “Nb = Nt = 0.1, Pr = Le = 10, Bi = 0.1, and M = 1”.

A δ γ Ec R k If Iθ Iφ

0.0 0.1 10 0.1 0.1 0.5 [-0.5,0.5] [-4.5,4.5 [-4.5,9.2]

0.1 — — — — — [-0.9,0.5] [-5.5,1.9] [-6.5,7.5]

0.2 — — — — — [-0.5,0.7] [-9.5,8.5] [-9.5,7.5]

0.3 — — 0.5 0.7 1.5 [-0.7,0.7] [-9.2,7.5] [-9.2,8.5]

0.9 — — — — — [-0.1,1.3] [-3.9,4.5] [-9.9,5.8]

1.5 — — 1.0 1.0 1.5 [1.0,1.3] [-4.9,3.9] [-4.9,4.9]

2.0 — — — — — [1.8,2.2] [-3.9,2.9] [-3.9,2.9]

2.4 — — — — — [2.5,3.1] [-4.5,4.5] [-4.5,3.5]

0.4 0.2 — — — — [-0.5,0.5] [-9.5,7.5] [-9.5,8.5]

— 0.4 — — 0.1 — [-0.3,0.4] [-9.8,9.9] [-9.8,9.9]

— 0.6 — — 1.0 — [-0.3,0.2] [-5.9,8.9] [-5.9,9.7]

— 0.8 — — — — [-0.4,0.1] [-6.6,7.6] [-6.5,5.5]

— 0.4 0.1 — — — [-0.3,0.3] [-5.5,7.9] [-5.5,9.9]

— — 0.5 — — — [-0.3,2] [-9.9,8.6] [-9.8,9.8

— — 1 — — — [-0.4,1.4] [-8.5,7.5] [-8.5,6.5]

— — 10 — — — [-0.5,1.5] [-3.9,1.9] [-3.9,2.9]

— — 10 — — — [-0.5,1.6] [-4.9,1.8] [-4.9,3.9]



MHD Casson Nanofluid 69

0 1 2 3 4 5 6 7 8 9 10
1.2

1.4

1.6

1.8

2

2.2

2.4

 = 0.01, 0.1, 1.0, 10

Figure 4.2: “Effect of γ on f ′(η) when δ = 0.1, A = 2.3, Pr = M = 1,
Nb = Nt = 0.5, Le = 2, Bi = 0.5, R = 0.5, K = 0.5, Ec = 0.1”
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Figure 4.3: “Effect of δ on f ′(η) when γ = 0.1, A = 0.4, Pr = M = 1,
Nb = Nt = 0.5, Le = 2, Bi = 0.5, R = 0.5, K = 0.5, Ec = 0.1”
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Figure 4.4: “Effect of A on f ′(η) when γ = 0.1, δ = 0.1, Pr = M = 1,
Nb = Nt = 0.5, Le = 2, Bi = 0.5, R = 0.5, K = 0.5, Ec = 0.1”
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Figure 4.5: “Impact of Bi on θ(η) when Nb = Nt = 0.5,Le = 2, γ = 0.1,
δ = 0.2, Pr = M = 1, A = 0.4, R = 0.5, K = 0.5, Ec = 0.1”
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Figure 4.6: “Impact of Nb on θ(η) when Nt = 0.5, Le = 2, γ = 0.1, δ = 0.2,
Pr = M = 1, A = 0.4, R = 0.5, K = 0.5, Ec = 0.1”
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Figure 4.7: “Effect of Nt on θ(η) when Nb = 0.5, Le = 2, γ = 0.1, Bi = 0.5,
δ = 0.2, Pr = M = 1, A = 0.4, R = 0.5, K = 0.5, Ec = 0.1”
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Figure 4.8: “Impact of δ on θ(η) when Nb = Nt = 0.5, Le = 2, γ = 0.1,
Bi = 0.5, Pr = M = 1, A = 0.4, R = 0.5, K = 0.5, Ec = 0.1”
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Figure 4.9: “Effect of A on θ(η) when Nb = Nt = 0.5, Le = 2, γ = 0.1,
Bi = 0.5, Pr = M = 1, Bi = 0.5, δ = 0.2, R = 0.5, K = 0.5, Ec = 0.1”
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Figure 4.10: “Effect of γ on θ(η) when Nb = Nt = 0.5, Le = 2, A = 0.4,
Bi = 0.5, Pr = M = 1, δ = 0.2, R = 0.5, K = 0.5, Ec = 0.1
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Figure 4.11: “Effect of Le on φ(η) when Nb = Nt = Bi = 0.1, Pr = 5,
A = 0.4, Bi = 0.5, M = 1, δ = 0.1, γ = 0.2, R = 0.5, K = 0.5, Ec = 0.1”
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Figure 4.12: “Effect of Bi on φ(η) when Nb = Nt = 0.1, Pr = 5, A = 0.4,
M = 1, δ = 0.1, γ = 0.2, R = 0.5, K = 0.5, Ec = 0.1”
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Figure 4.13: “Effect of Nt on φ(η) when Nb = 0.1, Pr = 5, A = 0.4, M = 1,
δ = 0.1, Bi = γ = 0.2, R = 0.5, K = 0.5, Ec = 0.1”
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Figure 4.14: “Effect of γ on φ(η) when Nb = Nt = 0.2, Le = 1, Bi = 0.5,
δ = 0.1, M = 1, A = 0.4, R = 0.5, k = 0.5, Ec = 0.1”
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Figure 4.15: “Effect of γ on −f ′′
(0) when Nb = Nt = 0.1, Le = 1, Pr = 2,

δ = 0.2, Bi = 10, A = 0.1, R = 0.5, k = 0.5, Ec = 0.1”



MHD Casson Nanofluid 76

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
10-5

 = 1, 3, 5

Figure 4.16: “Effect of δ on −f ′′
(0) when Nb = Nt = 0.1, Le = 1, γ = 1,

Pr = 2, A = 0.1, R = 0.5, k = 0.5, Ec = 0.1”
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Chapter 5

Conclusion

Numerical investigation for the heat and mass transport of Casson nanofluid over

a slip boundary and linear stretching sheet is presented in this thesis. The ra-

diation and magnetic effects are also incorporated in this study. In addition to

this, the effects of heat generation are also explored in the energy equation. Using

appropriate similarity transformations, the conversion of non-linear partial differ-

ential equations describing the proposed flow problem to a set of ordinary differ-

ential equations was made. The shooting technique is employed for the numerical

treatment. The impact of relevant flow parameters on the non-dimensional veloc-

ity, temperature and concentration profiles is illustrated in tabular and graphical

forms. The main conclusions drawn from the numerical results are summarized

below.

• The fluid velocity declines with increasing values of Casson and slip param-

eter.

• The fluid energy accelerates effectively with an increase in the Biot number.

• The temperature distribution enhances effectively with uprising values of

Brownian motion and thermophoresis parameters.

• Concentration profile decelerates for the boosting values of Lewis number

and thus we get a small molecular diffusivity and thermal boundary layer.
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• Fluid concentration and associative boundary thickness are increasing func-

tions of Casson parameter.

• It is noted that Nux is also increased by enhancing the values of Lewis

number.
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